Research on Statistics in Large Sample Test

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sample Path Large Deviations for Order Statistics

We consider the sample paths of the order statistics of independent and identically distributed random variables with common distribution function F . If F is strictly increasing but possibly having discontinuities, we prove that the sample paths of the order statistics satisfy the large deviation principle in the Skorokhod M1 topology. Sanov’s theorem is deduced in the SkorokhodM ′ 1 topology ...

متن کامل

Linear Approximations for Functional Statistics in Large-sample Applications Linear Approximations for Functional Statistics in Large-sample Applications

We discuss methods for obtaining linear approximations to a functional statistic, with particular application to bootstrapping medium to large datasets. Existing methods use analytical approximations, nite-diierence derivatives, or linear regression using bootstrap results. Finite-diierence methods require an additional n evaluations of a functional statistic (where n is the numberof observatio...

متن کامل

A New Approximation for the Null Distribution of the Likelihood Ratio Test Statistics for k Outliers in a Normal Sample

Usually when performing a statistical test or estimation procedure, we assume the data are all observations of i.i.d. random variables, often from a normal distribution. Sometimes, however, we notice in a sample one or more observations that stand out from the crowd. These observation(s) are commonly called outlier(s). Outlier tests are more formal procedures which have been developed for detec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Statistical Distributions and Applications

سال: 2017

ISSN: 2472-3487

DOI: 10.11648/j.ijsd.20170303.16